
Macintosh Technical Notes

• #27: MacDraw’s ‘PICT File Format

See also: QuickDraw
Color QuickDraw
Technical Note #21—

QuickDraw’s Internal Picture Definition
Technical Note #91—

Optimizing for the LaserWnter—Picture Comments

Written by: Ginger Jernigan August 20, 1986
Updated: March 1, 1988

This Technical Note originally described the PICT file format used by
MacDraw and the picture comments that MacDraw used to communicate
with the LaserWriter Driver. All of this information is now available from more
appropriate sources.

Descriptions of the PICT file format and the contents of PICTs can be found
in Inside Macintosh Volume V and Technical Note #21.

The picture comments supported by the LaserWriter driver are described in
Technical Note #91.

MacDraw is now a product of Claris. For information about MacDraw’s
specific use of PICT and for information about other Claris products, contact:

Claris Technical Support
440 Clyde Avenue
Mountain View, CA 94043

(415) 962-0371
Appielink: CLARIS.TECH

Technical Note #27 page 1 of 1 MacDraw’s ‘PICT File Format

.
.

Macintosh Technical Notes

#120: Drawing Into an Offscreen PixMap

See aiso: QuickDraw
Technical Note #41—Drawing Into an Offscreen Bitmap
Technical Note #119—

Determining If Color QuickDraw Exists
Technical Note #1 29—SysEnvirons

Written by: Jim Friedlander & Rick Blair May 4, 1987
Modified by: Rick Blair July 1, 1987
Updated: March 1, 1988

This technical note provides a simple example of drawing to, then copying
from, an offscreen PixMap. Changes since 5/87: Set theGDevice to the
MaxDevice before the OpenCPort call to get more of the PixMap set up
correctly. This saves code and, more importantly, improves its chances of
being compatible in the future. Secondly, fixed a typo in the OffRowBytes
calculation.

This example shows how to draw something in an offscreen Lxi.iap and then
CopyBits it back to the screen. It handles the case where multiple screens of different
pixel depths are present.

Before we can make any Color QuickDraw calls, we must be sure that Color QuickDraw
is present (see Technical Notes #119 and #129 for details). Then, given the following
types, constants and variables:

CONST
OffLeft 30;
OffTop — 30;
OffBottom 250;
OffRight 400;

(These constants for the bounds of the offscreen PixHap are chosen
because we know what the extent of the drawing will be and. we want to
restrict the size of the map as much as possib1e.

TYPE
BitMapPtr “BitMap; (for type coercion in the CopyBits call}

VAR
o ffRowBytes LONGINT;
sizeOfOff LONGINT;
myBits Ptr;
destRect Rect;
globRect Rect;
bRect Rect;

Techriicaf Note #120 page 1 of 4 Drawing Into an Offscreen PixMap

Now to fix up the PixMap location- and size-specific information:

WITH znyCGrafPtr.portPixMap DO BEGIN
bazeAddr : myBits;
rowbytes : offRowBytes + $8000; (remmber to be a PizMapl
bounds : bRect;

END; (with)

Color QuickDraw distinguishes between new and old style ports by checking the high bit
of rowBytes, which is why we add $8000 to offRowBytes in the above code. Now we
need to clone the maxDevice’S color table so we can put it into our offscreen PixMap.

ourcNfland.le : theMaxDevice’ . gdPMap pmTable;
err :— KandToHand(Handle(ourcMHandle)); (clone it)
(real programs do error checking here)

myCGrafPtr’.portPizMap.pmTable :— ourCMHandle; (put the cloned,
correctly set—up Color Table into the otfscreen map)

SetPort(GrafPtr(myCGrafPtr)); (Set the port to the offscreen port)

Now we call procedure Drawlt (which calls the function FillInColors) to draw an
image in the offscreen port:

FUNCTION FillInColor(r,g,b: Integer): RGBCoIor;
(small utility routine to return an RGBCo10r)

VAR
theColor : RGBC0Ior;

BEGIN (FiilInColor
WITH theColor DO BEGIN

red : r;
green : g;
blue : b;

END;
FilhlnColor : theColor;

END; (FillInColor)

PROCEDURE Drawlt;

VAR
OvalRect : Rect;
myRed,myBlue,myWhite,
znyGreen, inyalack : RGBCo1or;

BEGIN { Drawlt
(get our colors set up)
myRed : FilllnColor(—1,0,0);
xnyalue : FilitnColor(0,0,—1);
myGreen :— FiilInColor(0,—1,O);
mywhite : FilllnColor(—1,—1,-1);
myBlack : FillInColor(0,O,0);
PenMode(PatCopy);
RGBBackColor(myBJ.ue); (set the backcolor of the current port)
EraseRect (thePort’ .portRect); (blue it out)
RGBBackColor(white); (set back to white)

Technical Note #120 page 3 of 4 Drawing Into an Offscreen PixMap

RcForeCoior(myRed);{5et the forecolor of the current port)
SetRect(OvaiRect,30,30,190,150);
PaintOval (OvaiRect);

tnsetRect (OvaiRect, 1,20);
Eraseovai. (OvaiRect); (erase oval to white)

RGBForeCoior(myGreen);{draw the final oval in green)
InsetRect (OvaiRect, 40,1);
PaintOval (OvaiRect);
RGBforeColor (inyBiack);

END; { Drawlt I

Now we’re done drawing, so set the?ort and theGDevice back:

SetPort (MyCwindow);
SetGDevice (oldDevice);

Now we can draw the image onscreen by copyBitsing the bits from the otfscreen
?ixMap’ a port? ix to MyCWindow’ a port? ix:

destRect : bRect;
OffSetRect (destRect, OffLeft, Of fTop); (adjust for coordinates)
CopyBits (BitMapPtr (MyCGrafPtr .portPixMap’)’, Z4yCWindow .portBits,

bRect, destRect, 0, NIL);

and, finally, we clean up by closing the CGrafPort we created, freeing the space we
reserved for the offscreen P ixMap’ a pixel image and disposing of the color table we
allocated:

CloseCPort(myCGrafPtr); (Close our port)
DisposPtr(MyBits); (clean up)

-

DisposHandle (Handle (ourCMHandie)); (get rid of color table we cloned)

Note: For optimal performance, you will want to make sure that the source and
destination PixMaps are aligned—this will be the subject of a future technical note.

Technica’ Note #120 page 4 of 4 Drawing Into an Offscreen PixMap

